












In a Deterministic Finite Automaton (DFA), each state can have only one transition for each input symbol in the alphabet. Therefore, the maximum number of transitions that can be performed over a state in a DFA is equal to the number of input symbols in the alphabet. In your case, the alphabet consists of {a, b, c}, so the maximum number of transitions from any state would be 3 (since there are three input symbols in the alphabet) 1. This limitation ensures that DFAs remain deterministic and have a clear transition behavior for each input symbol. 

Minimum Number of Final States:
The minimum number of final states in a DFA is zero or one.
If the language recognized by the DFA is empty (i.e., it accepts no strings), then there are no final states.
Otherwise, there must be at least one final state to accept the strings in the language.
Maximum Number of Final States:
The maximum number of final states in a DFA is equal to the total number of states (n).
Each state can be designated as a final state, even if it is not necessary for recognizing the language.
Sum of Minimum and Maximum Number of Final States:
The sum of the minimum and maximum number of final states is given by: [ \text{Sum} = \text{Minimum} + \text{Maximum} = 1 + n = n + 1 ]

In a non-deterministic PDA (NPDA), certain states can have more than one outgoing edge for the same input symbol. Let’s analyze the given options:

READ or POP: This option does not specify a particular state, so we cannot determine if it has multiple outgoing edges.
START or READ: The START state is typically the initial state of a PDA, and it usually has only one outgoing edge for each input symbol. However, the READ state could potentially have multiple outgoing edges.
POP or REJECT: The REJECT state is typically a non-accepting state, and it usually has only one outgoing edge for each input symbol. The POP state could potentially have multiple outgoing edges.
Based on the common conventions, the state that is likely to have more than one outgoing edge is the READ state. Therefore, the correct answer is option b. 🤖🔍















In summary, the time complexity for deleting an element from the rear end of a deque is O(n) due to the need to move elements individually within the linked list structure1.















 




